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thermodynamic limit we write both a linear integral equation for the Bethe root density

and a linear system obeyed by the commuting charges. Consequently, we determine the

leading strong coupling contribution to the density and from this an approximation to the

leading and sub-leading terms of any charge Qr: it scales as λ1/4−r/2, which generalises the

Gubser-Klebanov-Polyakov energy law. In the end, we briefly extend these considerations

to finite lengths and ’excited’ operators by using the idea of a non-linear integral equation.
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1. Introduction

According to the AdS/CFT correspondence [1], string theory on the curved space-time

AdS5×S5 is equivalent to a conformal quantum field theory on its boundary. In particular,

type IIB superstring theory should be dual to N = 4 Super Yang-Mills theory (SYM). The

AdS/CFT correspondence is a general dictionary which would in particular equate energies

of string states to anomalous dimensions of local gauge invariant operators of the quantum

field theory.

One of the most important recent development in this context is the discovery of

integrability in both planar field theory and string theory. In few words, integrable models

appear as Bethe equations to be satisfied by ’rapidities’ which parametrise on the one side

composite operators (and their anomalous dimensions in SYM) and on the other side the

corresponding dual objects in string theory, i.e. states (and their energies, respectively).

In this context, the basic initial result was the identification [2] of the one-loop di-

latation operator of scalar gauge-invariant fields (of bare dimension L) with an SO(6)

integrable hamiltonian with (L sites). Thanks to this discovery, one could start to use

the powerful technique of the Bethe Ansatz in order to compute anomalous dimensions of

long operators, giving incredible boost towards a proof of the AdS/CFT correspondence.

Soon afterwards, integrability at higher loops [3, 4] was discovered and an all-loops Bethe

Ansatz proposed [5]. The restriction to the SU(2) sector of these Bethe equations gives the

previously hinted BDS model [6], which, remarkably, was shown to be, in a precise sense,

the asymptotic limit of the one-dimensional Hubbard model [7, 8].

In a parallel way, integrability in superstring theory was discovered first at classical

level [9] and work at (semi)classical level allowed to interpret the complex curve subtending
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the dynamics in terms of density integral equations, remembering those in Bethe Ansatz

theory [10]. Moving from here, the first steps towards extending integrability at quantum

level showed the appearance of long-range Bethe Ansatz equations with, however, an ad-

ditional dressing phase [11]. More recently, this phase has been understood as a necessary

factor to guarantee the (non-relativistic) crossing symmetry of the S-matrix [12]. Eventu-

ally, a phase factor — determined by string loop expansion at first orders [13] and crossing

symmetry — was proposed in [14, 15]. In [14] the complete asymptotic strong coupling

(i.e. string loop) expansion of the dressing factor was given, whereas in [15] an expression

valid for all values of the coupling constant was fixed.

In this paper we want to address some of the issues related to the dressing factor,

in a sector, SU(2), different from that, SL(2), in which it was initially proposed [15].

First of all, we will give a proof that the factor given as a meromorphic function of the

coupling constant in [15] has the asymptotic expansion proposed by [14].1 Afterwards, we

will write the thermodynamic (i.e. in the L → ∞ limit) linear integral equation satisfied

by the density of roots describing the highest (or, better, ’anti-ferromagnetic’) anomalous

dimension state and then the system of linear equations obeyed by (the eigenvalues of) the

commuting charges: we also point out some differences and difficulties introduced by the

presence of the dressing factor. Then, we find the leading solution to the density equation

in the strong coupling limit and derive, upon integrating this solution, an approximation

to the leading term of any charge. As useful exercise, we show that in a particular case,

corresponding to doubling the ’physical’ dressing factor, the aforementioned equations (for

both the density and the charges) allow us for simple solutions in the strong coupling

limit. Therefore, we are able to give the exact leading and the sub-leading terms of all

the conserved quantities and we can understand why these contributions are exact in this

case whereas an approximation in the ’physical’ case. Eventually, we deduce an extension

for finite length, L, of the density equation and of the charges equations by using the idea

of the non-linear integral equation [16] along the lines of [17]: now the loop expansion

can be trusted up to order λL−1. For simplicity’s sake we will limit our attention to the

anti-ferromagnetic state and hole type excitations on it, even because in other sectors (cf.

the treatment of [15]) these are the only possible states.

2. Bethe equations in the SU(2) sector

It is nowadays clear that the asymptotic Bethe Ansatz type equations describing planar

N = 4 SYM should contain — with respect to the first proposals — a universal dressing

phase [11, 14, 15]. In the SU(2) scalar sector, the BDS equations [6] ought to be modified

into
[

X(uk + i
2)

X(uk − i
2)

]L

=

M
∏

j=1
j 6=k

uk − uj + i

uk − uj − i
exp[2iθ(uk, uj)] , (2.1)

1Indeed, this was not completely proved in [15]: we thank M. Staudacher to have encouraged us on this

matter.
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with the usual notation

X(x) =
x

2

(

1 +

√

1 − λ

4π2x2

)

. (2.2)

On the other hand, the (renormalised) dimension corresponding to the operator/solution

{uk}k=1,...,M of (2.1) is formally unchanged, i.e.

∆ = L +

M
∑

k=1

[

(

1

2
− iuk

)

√

1 +
4g2

(

1
2 − iuk

)2 +

(

1

2
+ iuk

)

√

1 +
4g2

(

1
2 + iuk

)2 − 1

]

, (2.3)

where we have introduced λ = Ng2
YM = 16π2g2, the ’t Hooft coupling of planar theory

(N → ∞, gYM → 0). The term asymptotic means exactly that this Ansatz is believed

to give the exact loop expansion to the anomalous dimension up to wrapping corrections,

starting at order λL. The complete phase factor has been conjectured to be the κ = 1 of

the following double series [15]

θ(uk, uj) = κ
∞
∑

r=2

∞
∑

ν=0

βr,r+1+2ν(g)[qr(uk)qr+1+2ν(uj) − qr(uj)qr+1+2ν(uk)] . (2.4)

However, we prefer to keep κ unfixed, because in section 4 we will study the case κ =

2, which mathematically reveals surprising simplifications. In order to fix the notations

in (2.4), we remind that qr(u) is the magnon, u, r-th charge2

qr(u) =

(

8π2

λ

)r−1
1

ir−2(r − 1)







[

(

1

2
− iu

)

√

1 +
4g2

(

1
2 − iu

)2 −
(

1

2
− iu

)

]r−1

+

+ (−1)r

[

(

1

2
+ iu

)

√

1 +
4g2

(

1
2 + iu

)2 −
(

1

2
+ iu

)

]r−1






, (2.5)

and the function βr,r+1+2ν(g) are meromorphic functions of g, introduced and studied

in [15]. In this paper their weak coupling expansion was proposed as

βr,r+1+2ν(g) =

∞
∑

µ=ν

g2r+2ν+2µβ
(r+ν+µ)
r,r+1+2ν , (2.6)

the coefficients β
(r+ν+µ)
r,r+1+2ν being

β
(r+ν+µ)
r,r+1+2ν = 2(−1)r+µ+1 (r − 1)(r + 2ν)

2µ + 1

(

2µ + 1

µ − r − ν + 1

) (

2µ + 1

µ − ν

)

ζ(2µ + 1) . (2.7)

These weak-coupling Taylor series around g = 0 have finite radius of convergence and

define unambiguously these functions of g. In particular, they can be written in terms of

integrals as follows:

βr,r+1+2ν(g) = 2(r − 1)(r + 2ν)(−1)νg2r+2ν−1

∫ ∞

0
dt

Jr−1(2gt)Jr+2ν(2gt)

t(et − 1)
. (2.8)

2The following expression may be interpreted as valid even for the momentum, provided in the sense of

the limit r → 1.
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Indeed, by expanding the product of Bessel functions in the integrand of (2.8) in Taylor

series around the origin [18], one can easily check the expansion (2.6).

Now we may give a proof that the functions defined by (2.8) enjoy at strong coupling

(g → +∞) the asymptotic expansion proposed in [14]. We reparametrise the βs as

βr,s(g) = gr+s−2cr,s(g) ,

cr,s(g) = 2 cos

[

π(s − r − 1)

2

]

(r − 1)(s − 1)

∫ ∞

0
dt

Jr−1(2gt)Js−1(2gt)

t(et − 1)
, (2.9)

in order to make contact with the notations of [14]. From their definition it is always r ≥ 2,

s ≥ r + 1 and their difference s − r equals a positive odd integer. We now perform the

change of variables t → t/2g and expand the function 1/(et/2g −1) in powers of t/2g. Then

we formally exchange this power series with the integral, obtaining

∫ ∞

0
dt

Jr−1(2gt)Js−1(2gt)

t(et − 1)
=

∞
∑

n=0

1

(2g)n−1

Bn

n!

∫ ∞

0
dtJr−1(t)Js−1(t)t

n−2 , (2.10)

with Bn the Bernoulli numbers. The series in (2.10) is for now formal, since the integral

is defined only for n ≤ 2. However, the idea is to extend the result obtained for general n,

0 ≤ n ≤ 2, to arbitrary values of n. This will eventually define the asymptotic expansion

of the coefficients cr,s(g). Indeed, we may specialise formula 6.574.2 of [18] to the form

∫ ∞

0
dtJr−1(t)Js−1(t)t

n−2 =
2n−2Γ(−n + 2)Γ

(

r+s−3+n
2

)

Γ
(

s−r+3−n
2

)

Γ
(

r+s+1−n
2

)

Γ
(

r−s+3−n
2

) . (2.11)

Strictly speaking this formula is valid for n = 0, 1. When n = 0 the last Gamma function

in the denominator is divergent unless s = r + 1, and then

∫ ∞

0
dtJr−1(t)Js−1(t)t

−2 = δs,r+1
1

4r(r − 1)
. (2.12)

For n = 1 the expression may be simplified into

∫ ∞

0
dtJr−1(t)Js−1(t)t

−1 =
2 sin

(

π s−r
2

)

π

1

(s + r − 2)(s − r)
. (2.13)

For what concerns the values n ≥ 2, we remark that the right hand side of (2.11) can be

well defined not only for n = 2, but also for all even n. In order to prove this, it is useful

to introduce the integer k ≥ 0, such that s − r = 2k + 1, and the regularisator δ → 2

∫ ∞

0
dtJr−1(t)Js−1(t)t

n−δ =
2n−δΓ(−n + δ)Γ

(

k + r + n−δ
2

)

Γ
(

k + 1 − n−δ
2

)

Γ
(

k + r − n−δ
2

)

Γ
(

−k − n−δ
2

) . (2.14)

In this limit, the first Gamma function in the numerator as well as the last in the denomi-

nator diverge, but their ratio stays finite:

lim
δ→2

Γ(δ − n)

Γ
(

−k + δ−n
2

) =
1

2
(−1)

n−s+r−1

2

Γ
(

s−r−1+n
2

)

Γ(n − 1)
. (2.15)
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Therefore, we may write

∫ ∞

0
dtJr−1(t)Js−1(t)t

n−2 = (−1)
n−s+r−1

2

2n−3Γ
(

s−r−1+n
2

)

Γ
(

s+r−3+n
2

)

Γ(n − 1)Γ
(

s−r+3−n
2

)

Γ
(

s+r+1−n
2

) , (2.16)

for all n even, n ≥ 2. Because of the divergence of the second Gamma function in the

denominator, the above result is different from zero only if

n 6 2k + 2 = s − r + 1 . (2.17)

We now plug (2.16) into (2.10) and obtain the coefficients c
(n)
r,s of the asymptotic expansion

cr,s(g) =
∞

∑

n=0

c(n)
r,s g1−n , (2.18)

in the form

c(0)
r,s = δr+1,s , c(1)

r,s = − 2

π

(r − 1)(s − 1)

(s + r − 2)(s − r)
. (2.19)

and for n ≥ 2

c(n)
r,s =

1

(−2π)nΓ(n − 1)
ζ(n)(r − 1)(s − 1)

Γ
(

s+r+n−3
2

)

Γ
(

s−r+n−1
2

)

Γ
(

s+r−n+1
2

)

Γ
(

s−r−n+3
2

) . (2.20)

In fact, this expression for any integer n ≥ 2 may be obtained upon expressing the Bernoulli

number Bn via the Riemann zeta function ζ(n), even for odd n, as3

Bn = (−1)
n
2
−1 ζ(n)n!

2n−1πn
. (2.21)

To summarise, we have obtained the strong coupling expansion (2.18), (2.20) for the

functions cr,s(g) entering the dressing factor. Notice that in formulæ (2.19), (2.20) r ≥ 2

and s − r equals a positive odd integer and (2.20) implies when n is even c
(n)
r,s = 0 for

n > s − r + 1.

3. Thermodynamic limit of the highest energy state

In the infinite length limit L → ∞, there is no possibility for wrapping and consequently

the equations (2.1) should give an exact description of the SU(2) scalar sector. In this limit,

the Bethe roots become closer and closer in such a way to form a continuous distribution.

The latter may be described by a density function ρ(u) and the Bethe equations turn into

a linear integral equation.

In order to find this equation, we rewrite equations (2.1) in the logarithmic form,

iL ln
X

(

uk + i
2

)

X
(

uk − i
2

) = i

M
∑

j=1
j 6=k

ln
uk − uj + i

uk − uj − i
− 2

M
∑

j=1
j 6=k

θ(uk, uj) + 2πKk , (3.1)

3It may be proved that this amounts to a further regularisation of the coefficients of the series (2.10).
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where Kk are integers which depend on the state we are considering. Now, for simplicity’s

sake we specialise our analysis to the state with uniquely M = L/2 real roots (no complex

roots). This corresponds to the anti-ferromagnetic or highest anomalous dimension config-

uration and there is not even room for holes and then Kk = k. When L → ∞ all the sums

over Bethe roots u = uk may be replaced by integrals with Stieltjes measure

duρ(u) = du
1

L

dk

du
, (3.2)

and hence, upon derivating with respect to u, each sum in (3.1) may be expressed in terms

of ρ itself

i
X ′ (u + i

2

)

X
(

u + i
2

) − i
X ′ (u − i

2

)

X
(

u − i
2

) = i

∫ ∞

−∞
dvρ(v)

[

1

u − v + i
− 1

u − v − i

]

−

−2

∫ ∞

−∞
dvρ(v)

d

du
θ(u, v) + 2πρ(u) .

Inserting the form (2.4) for the dressing phase, we have

i

2

[

1
√

(u+ i
2)2−4g2

− 1
√

(u− i
2)2−4g2

]

= πρ(u)+

∫ ∞

−∞
dv

ρ(v)

(u − v)2 + 1
−

−κ
∞

∑

r=2

∞
∑

ν=0

βr,r+1+2ν(g)q′r(u)

∫ ∞

−∞
dvρ(v)qr+1+2ν(v)+

+κ

∞
∑

r=2

∞
∑

ν=0

βr,r+1+2ν(g)q′r+1+2ν(u)

∫ ∞

−∞
dvρ(v)qr(v) .

In order to have shorter expressions, we introduce the (total) charges, normalised by a

factor 1/L,

Qr =

∫ ∞

−∞
dvρ(v)qr(v) . (3.3)

As usual, we pass to the Fourier transform, using the simple expression [18]

q̂r(k) = 2r−1 (2π)r

(
√

λ)r−1

1

ir−2

Jr−1

(√
λ

2π k
)

ke
|k|
2

, r ≥ 1 . (3.4)

Then, we obtain for the Fourier transform of the density

πe−
|k|
2 J0

(

√
λ

2π
k

)

= πρ̂(k) + πρ̂(k)e−|k| −

−κ

∞
∑

r=2

∞
∑

ν=0

βr,r+1+2ν(g)2r−1 (2π)r

(
√

λ)r−1

1

ir−3
e−

|k|
2 Jr−1

(

√
λ

2π
k

)

Qr+1+2ν +

+κ

∞
∑

r=2

∞
∑

ν=0

βr,r+1+2ν(g)2r+2ν (2π)r+1+2ν

(
√

λ)r+2ν

1

ir−2+2ν
e−

|k|
2 Jr+2ν

(

√
λ

2π
k

)

Qr .
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Collecting the terms containing ρ̂(k) all together, we may deduce a linear integral equation

ρ̂(k) =
J0

(√
λ

2π k
)

2 cosh k
2

+ κ

∞
∑

r=2

∞
∑

ν=0

βr,r+1+2ν(g)2r−1 (2π)r

(
√

λ)r−1

1

ir−3

Jr−1

(√
λ

2π k
)

2π cosh k
2

Qr+1+2ν −

−κ

∞
∑

r=2

∞
∑

ν=0

βr,r+1+2ν(g)2r+2ν (2π)r+1+2ν

(
√

λ)r+2ν

1

ir−2+2ν

Jr+2ν

(√
λ

2π k
)

2π cosh k
2

Qr . (3.5)

Of course, this equation may entail an analogous linear equation for the density of roots

ρ(u). But more importantly it tells us that the charges Qr = Qr(g) determine ρ̂(k) for any

g; and on its turn ρ̂(k) yields the charges (3.3) as

Qr =

∫ ∞

−∞

dk

2π
ρ̂(k)q̂r(−k) =

∫ ∞

−∞
dkρ̂(k)

ir−2

gr−1

Jr−1(2gk)

ke
|k|
2

. (3.6)

Thanks to this sort of rôle exchange, we think that the form of the integral equation in

terms of the charges is of particular interest. As an example of this utility, we will see in

the following the derivation of a linear system of algebraic equations for the charges.

In fact, upon inserting (3.6) in (3.5), we may rewrite the equation for ρ̂(k) in a more

explicit way

ρ̂(k) =
J0(2gk)

2 cosh k
2

+ κ

∞
∑

r=2

∞
∑

ν=0

βr,r+1+2ν(g)(−1)1+νg1−2ν−2r

[

Jr−1(2gk)

cosh k
2

·

·
∫ ∞

−∞
dpρ̂(p)

Jr+2ν(2gp)

pe
|p|
2

+
Jr+2ν(2gk)

cosh k
2

∫ ∞

−∞
dpρ̂(p)

Jr−1(2gp)

pe
|p|
2

]

, (3.7)

still slightly simplified if in terms of the cr,s(g) (using (2.9)):

ρ̂(k) =
J0(2gk)

2 cosh k
2

+ κ
∞
∑

r=2

∞
∑

ν=0

cr,r+1+2ν(g)(−1)1+ν

[

Jr−1(2gk)

cosh k
2

·

·
∫ ∞

−∞
dpρ̂(p)

Jr+2ν(2gp)

pe
|p|
2

+
Jr+2ν(2gk)

cosh k
2

∫ ∞

−∞
dpρ̂(p)

Jr−1(2gp)

pe
|p|
2

]

. (3.8)

In the end, upon highlighting in this equation, via (3.6), the explicit dependence on the

conserved charges, we may derive immediately an infinite set of linear equations for them:

Qs =
is−2

gs−1

[

∫ ∞

−∞
dk

Js−1(2gk)J0(2gk)

k(e|k| + 1)
+

+2κ
∞
∑

r=2

∞
∑

ν=0

cr,r+1+2ν(g)(−1)1+ν

∫ ∞

−∞
dk

Js−1(2gk)Jr−1(2gk)

k(e|k| + 1)

gr+2ν

ir+2ν−1
Qr+2ν+1

+2κ

∞
∑

r=2

∞
∑

ν=0

cr,r+1+2ν(g)(−1)1+ν

∫ ∞

−∞
dk

Js−1(2gk)Jr+2ν(2gk)

k(e|k| + 1)

gr−1

ir−2
Qr

]

. (3.9)

We want to remark that this equations form a system of linear algebraic equations for (the

eigenvalues of) the commuting charges on the highest energy state. We believe it could fur-

nish important information on these eigenvalues and could introduce their disentanglement

under particular conditions (for instance in the strong coupling regime).
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We have to remark that an equivalent equation for ρ̂(k) has been already published

in [19] by making use of their formalism of magic kernels [15].

Both equations (3.8) and (3.9) characterise the L → ∞ limit of the highest anomalous

dimension state of the scalar sector of N = 4 SYM, once one supposes this to be described

by the Ansatz (2.1). One has to remark the important modifications due to the presence of

the dressing phase. Without that phase (i.e. in the framework of the BDS Bethe Ansatz),

the thermodynamic expressions for ρ̂(k) and Qs reduce to

ρ̂(k) =
J0(2gk)

2 cosh k
2

,

Qs =
is−2

gs−1

∫ ∞

−∞
dk

Js−1(2gk)J0(2gk)

k(e|k| + 1)
. (3.10)

By construction, at weak coupling the dressing factor starts at order g6 and therefore, up

to that order, the solutions of (3.8) and (3.9) are given by (3.10). On the other hand, the

strong coupling limit is dominated by contributions coming from the dressing factor and

it is of great importance, since it makes contact with semiclassical results in string theory

(cf. second reference of [1]).

We remark the presence in equations (3.9) of the quantities

c̃r,s(g) =

∫ ∞

0
dt

Jr−1(2gt)Js−1(2gt)

t(et + 1)
, (3.11)

which look very similar to the functions cr,s(g) appearing in the dressing factor. Actually,

the elementary identity
1

ex − 1
=

1

2

(

1

e
x
2 − 1

− 1

e
x
2 + 1

)

(3.12)

allows us to write, when r ≥ 2 and s − r equals a positive odd integer,

2c̃r,s(g) =
cr,s(g) − 2cr,s

( g
2

)

cos
[

π(s−r−1)
2

]

(r − 1)(s − 1)
. (3.13)

This entails the strong coupling expansion

c̃r,s(g) =

∞
∑

n=0

c̃(n)
r,s g1−n (3.14)

of the integrals contained in (3.9) in terms of the coefficients (2.19), (2.20):

c̃(n)
r,s =

(1 − 2n)c
(n)
r,s

2(r − 1)(s − 1) sin π(s−r)
2

. (3.15)

In particular, we get c̃
(0)
r,s = 0 and

c̃(1)
r,s =

1

π

1

(s + r − 2)(s − r)

1

sin π(s−r)
2

; (3.16)

c̃(n)
r,s =

1

(−2π)nΓ(n − 1)
ζ(n)

(1 − 2n)

2 sin π(s−r)
2

Γ
(

s+r+n−3
2

)

Γ
(

s−r+n−1
2

)

Γ
(

s+r−n+1
2

)

Γ
(

s−r−n+3
2

) . (3.17)
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We remember that results (3.16), (3.17) are obtained when r ≥ 2 and s − r is equal to a

positive odd integer. They can be extended to other values of r, s by using the symmetry

property c̃r,s(g) = c̃s,r(g). Actually, this is what we will need for applications in this paper.

As a final remark, we observe that, with the before-stated restrictions on r and s,

relation (3.13) may be inverted as

cr,s(g) = 2 cos

[

π(s − r − 1)

2

]

(r − 1)(s − 1)

∞
∑

n=0

2nc̃r,s(2
−ng) . (3.18)

4. Strong coupling limit

It is of great interest to find the solutions of the linear equations for ρ̂ and the charges Qr

in the strong coupling limit (i.e. g → +∞), as these ought to match the semiclassical string

theory expansion (provided no attention is payed to the order of the two limits L → ∞
and g → +∞ as shown in [8]). Referring to formula (2.4), we will first concentrate on the

case of generic κ, where we will be able to find the leading term for ρ and, in a sense we

will specify afterwards, to provide information on the leading term of the charges Qr. In a

second moment, we will consider the particular case κ = 2, where, because of considerable

mathematical simplifications, it is possible to find exactly the leading terms of the density

ρ and of the eigenvalues of all conserved charges Qr.

We have to remark that in the final proposal of [15] the value of interest is κ = 1. In

this case, numerical computation of the strong coupling limit of the anomalous dimension

was first performed in [20] and, subsequently, analytical confirmation of their finding was

given in [21], following, though, a way different from ours. Nonetheless, we would like here

to analyse the strong coupling expansion of ρ̂ and of the charges, and the difficulties in

their comparison.

4.1 Generic κ

Equation (3.5) clearly suggests and gives a full meaning to what was proposed in [22], i.e.

that 2 cosh k
2 ρ̂(k) may be developed in series of Bessel functions

2 cosh
k

2
ρ̂(k) =

∞
∑

m=0

a2m(g)J2m(2gk) . (4.1)

We insert this expansion in (3.8) and re-write (3.8) as a linear system of equations for the

coefficients a2n(g):4

a0(g) = 1

a2n(g) = 4κ

[ ∞
∑

ν=0

∞
∑

m=0

(−1)1+νc2n+1,2n+2ν+2(g)c̃2m+1,2n+2ν+2(g) a2m(g) + (4.2)

+
n−1
∑

ν=0

∞
∑

m=0

(−1)1+νc2n−2ν,2n+1(g)c̃2n−2ν,2m+1(g) a2m(g)

]

, n ≥ 1.

4We are supposing that it is possible to exchange the symbol of integral with that of series: in general, we

have no specific guarantee of the validity of this hypothesis. On the contrary, counterexamples are known;

however, it is customary (cf. for instance [22]) to operate the exchange at this stage.
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We take now the limit g → +∞. Supposing that, for n ≥ 1,

lim
g→+∞

a2n(g) = a
(0)
2n , (4.3)

the leading order O(g) of the second of equations (4.2) is5

c̃
(1)
1,2n+2 + c̃

(1)
2n,1 +

∞
∑

m=1

[c̃
(1)
2m+1,2n+2 + c̃

(1)
2n,2m+1] a

(0)
2m = 0 , (4.4)

where c̃
(1)
r,s is given by (3.16). The solution of this equation (remember that a

(0)
0 = 1) is

a
(0)
2m = 2(−1)m , m ≥ 1 . (4.5)

Therefore, for the leading term of the density,

ρ̂(0)(k) =
1

2 cosh k
2

∞
∑

n=0

a
(0)
2n J2n(2gk) , (4.6)

we obtain through summation formulæ for Bessel functions in [18], the expression

ρ̂(0)(k) =
cos(2gk)

2 cosh k
2

⇒ ρ(0)(u) =
1

4

[

1

cosh π(u + 2g)
+

1

cosh π(u − 2g)

]

. (4.7)

This form for the leading density is not surprising. Numerical considerations, presented

in [20] for κ = 1, show that the momentum of one magnon in the anti-ferromagnetic state

scales, at strong coupling, as

pk = αkλ
− 1

4 + · · · . . (4.8)

This implies that the rapidity uk = 1
2cotg pk

2

√

1 + λ
π2 sin2 pk

2 behaves like

uk =
sgn(αk)

2π
λ

1

2 + · · · . (4.9)

Therefore, Bethe roots accumulate at the two values ±λ
1
2

2π = ±2g, exactly as suggested

by (4.7).

Yet, owing to the presence of g in the argument of the Bessel functions in the se-

ries (4.6), the leading expression for ρ̂(k) (4.7) can be really trusted only for gk ≃ 1 (and

g ≫ 1). In particular, this means that, if we insert (4.7) in (3.3), we only obtain an ap-

proximation for the leading value of (the eigenvalues of) the charges Qr. For even r (if r

is odd, we have Qr = 0, since ρ(u) = ρ(−u)) we may indeed conclude

Qr ≃ 22−r

4ir−2(r − 1)g2r−2

{

∫ ∞

−∞

du

cosh πu

[

(

1

2
− iu + 2ig

)

√

1 +
4g2

(

1
2 − iu + 2ig

)2−

− 1

2
+ iu − 2ig

]r−1

+ h.c.

}

=
2−

5

2

gr− 1

2

I + O

(

1

gr

)

. (4.10)

5Here we are again exchanging the above limit (or the corresponding asymptotic series) with the series.

This may be troublesome for the next-to-leading correction to a2n(g).
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We will go on expanding in the following, but for now we just concentrate on the first term

where the integral

I = 2

∫ ∞

−∞

du

cosh πu
[
√

i + 2u +
√
−i + 2u] (4.11)

may be computed by moving the domain of integration on the line Imu = −1/2 i.e. changing

variable y = π
2 (i + 2u):

I =
4
√

2

π
3

2

∫ ∞

0
dy

√
y

sinh y
=

2

π
(2

3

2 − 1)ζ

(

3

2

)

= 3.04084 . . . . . (4.12)

As expected, our result, which does not depend on κ, differs from the numerical computa-

tion of [20], valid for κ = 1: in formula (5.7) of their paper they state that

∆ = L
[

π
1

2 g
1

2 + O(g0)
]

, (4.13)

which would come out from a value I = 2
√

2π. Nevertheless, we may reproduce the ’right’

value (4.13) by shifting the accumulation points in the limiting delta-functions, i.e.

ρ(0)(u) =
1

4

[

δ

(

u + 2g − π

4
+

1

4π

)

+ δ

(

u − 2g +
π

4
− 1

4π

)]

. (4.14)

These shifts might allow for a simple interpretation as an effect of sub-leading corrections

to ρ̂(k), though the expression before is not the leading term (in the sense that has been

defined above).

4.2 The case κ = 2

The κ = 2 case reveals surprising mathematical simplifications, as here the formulæ above

for the density and (the eigenvalues of) the charges ((4.7) and (4.10) respectively) turn

out to be the exact leading terms without exchanging limit processes. For this reason, we

believe this case may be important to understand in a deeper manner the meaning of the

strong coupling expansion.6

As discussed in the previous subsection, Bethe roots accumulate at ±2g independently

of the value of κ. Therefore, their density ρ(u) ought to have the form

ρ(u) =
1

4
[f(u + 2g) + f(−u + 2g)] , (4.15)

where f(u) is a function peaked around u = 0, not depending on g and such that

∫ ∞

−∞
duf(u) = 1 . (4.16)

Now, we show that the guess (4.15), with a proper choice of f , is indeed solution of the

linear equation (3.8) when g → +∞. In fact, this form allow us to compute the charges Qr

6This exactness do not exclude, on the contrary may support, the need for changing the expansion as

defined by (4.1).
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appearing in (3.7). If r is odd, we have Qr = 0, since ρ(u) = ρ(−u). Otherwise, for even

r, we gain

Qr =
22−r

4ir−2(r − 1)g2r−2

{

∫ ∞

−∞
duf(u)

[

(

1

2
− iu + 2ig

)

√

1 +
4g2

(

1
2 − iu + 2ig

)2− (4.17)

−1

2
+ iu − 2ig

]r−1

+ h.c.

}

=

[

2−
5

2

gr− 1

2

If − (r − 1)
2−2

gr
+ O

(

1

gr+ 1

2

)]

,

where the leading term is proportional to the f-depending integral

If = 2

∫ ∞

−∞
duf(u)[

√
i + 2u +

√
−i + 2u] , (4.18)

whereas the sub-leading term does not depend on f .

Now, we shall plug the result (4.17) into the linear equation (3.8) in which we have

consistently developed the coefficients cr,s(g) according to (2.20): in this respect, it is

sufficient to insert the leading contribution cr,s(g) = δr+1,s g:

ρ̂(k) =
J0(2gk)

2 cosh k
2

−

−4g

∞
∑

m=1

J2m(2gk)

cosh k
2

g2m+1

2(−1)m

[

2−
5

2

g2m+ 3

2

If − (2m + 1)
2−2

g2m+2

]

[1 + O(g−1)] −

−4g
∞
∑

m=1

J2m(2gk)

cosh k
2

g2m−1

2(−1)m−1

[

2−
5

2

g2m− 1

2

If − (2m − 1)
2−2

g2m

]

[1 + O(g−1)] .

Since the leading order terms in the sums cancel out, we are left with the equation

ρ̂(k) =
J0(2gk)

2 cosh k
2

− 2
∞

∑

m=1

(−1)m−1 J2m(2gk)

2 cosh k
2

[1 + O(g−1)] . (4.19)

As in the previous subsection, the sum over m is easily performed and eliminates the Bessel

functions out of the game:

ρ̂(k) =
cos(2gk)

2 cosh k
2

+ O(g−1) ⇒ ρ(u) =
1

4

[

1

cosh π(u + 2g)
+

1

cosh π(u − 2g)

]

+ O(g−1) .

(4.20)

This identifies the function f(u) with

f(u) =
1

cosh πu
, (4.21)

furnishing again the leading density at generic κ of previous subsection. In particular, the

value of the integral (4.18) is still given by (4.12).
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As further check, one can verify that the strong coupling limit (4.17) of the charges

actually satisfies any equation (3.9), i.e.

Qr =
ir−2

gr−1

{

1

π(r − 1)2 cos π(r−2)
2

−

− 8

π
g

∞
∑

m=1

(−1)m− r
2

(2m − 1 + r)(2m + 1 − r)

g2m+1

2(−1)m

[

2−
5

2

g2m+ 3

2

I − (2m + 1)
2−2

g2m+2

]

−

− 8

π
g

∞
∑

m=1

(−1)m− r
2

(2m − 1 + r)(2m + 1 − r)

g2m−1

2(−1)m−1

[

2−
5

2

g2m− 1

2

I − (2m − 1)
2−2

g2m

]}

,

which is easily verified upon considering the leading order of the l.h.s. Qr = O
(

1

gr− 1
2

)

. In

conclusion, the expansion (4.17),

Qr =

[

2−
5

2

gr− 1

2

I − (r − 1)
2−2

gr
+ O

(

1

gr+ 1

2

)]

=

=

[

2−
3

2

gr− 1

2

(2
3

2 − 1)

π
ζ

(

3

2

)

− (r − 1)
2−2

gr
+ O

(

1

gr+ 1

2

)]

, (4.22)

is the exact one when g → +∞ and κ = 2. Moreover, it also yields the next-to-leading

term in the approximation defined in the previous subsection when κ = 1.

In particular we can estimate the anomalous dimension within the two first orders

∆ = L(1 + 2g2Q2) = L

[

2−
1

2
(2

3

2 − 1)

π
ζ

(

3

2

)

g
1

2 +
1

2
+ O(g−

1

2 )

]

. (4.23)

5. Finite size equations

In sections 3 and 4 we have studied the Bethe equations (2.1) and the conserved charges

in the anti-ferromagnetic configuration and in the thermodynamic regime. In this section,

we want to analyze the finite L case, for slightly more general states, and we also allow for

the presence of holes in the sequence of real Bethe roots. In this respect, it is convenient

to rewrite equations (2.1) in an integral form,– called non-linear integral equation to be

distinguished by the linear one of the thermodynamic limit [16]. This non-linear equation

has always revealed to be effective for the study of large but finite size corrections, different

limit regimes (strong coupling, large size etc.) and for many other issues (cf. for instance [8]

and references therein).

As far as N = 4 SYM is concerned, the equations (2.1) at finite L are reliable only up

to the order g2L−2, because they do not take into account the wrapping effects. Therefore,

all the finite L formulæ presented in this section have to be understood as relevant only

up to the order g2L−2.

As usual [16], we start from equations (2.1) in the logarithmic form (3.1)

iL ln
X

(

uk + i
2

)

X
(

uk − i
2

) = i
M
∑

j=1

j 6=k

ln
uk − uj + i

uk − uj − i
− 2

M
∑

j=1

j 6=k

θ(uk, uj) + 2πKk . (5.1)
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Consequently, we define two functions giving also their different analyticity domain

φ(x) = i ln
i + x

i − x
= 2arctan x , Imx < 1 ; Φ(x) = i ln

X
(

i
2 + x

)

X
(

i
2 − x

) , Imx < 1/2 . (5.2)

Upon using the relations

i ln
x + i

x − i
− i ln

i + x

i − x
= −π ,

i ln
X

(

x + i
2

)

X
(

x − i
2

) − i ln
X

(

i
2 + x

)

X
(

i
2 − x

) = −π ,

we may recast (5.1) as

LΦ(uk) =

M
∑

j=1

φ(uk − uj) − 2

M
∑

j=1

θ(uk, uj) + π(L − M + 1 + 2Kk) . (5.3)

Let us define the counting function (analytic in a strip centered on the axis)

Z(u) = LΦ(u) −
M
∑

j=1

φ(u − uj) + 2
M
∑

j=1

θ(u, uj) , (5.4)

which renders the Bethe equations in the simple form

eiZ(uk) = −1 . (5.5)

Now, we concentrate on the state characterised by M real Bethe roots, uj , and H holes,

xh, which are defined to satisfy (5.5), without being solutions of the original Bethe equa-

tions (5.1). In this case, one may express a sum on the Bethe roots for a function f(u) as

logarithmic indicator integral (for a detailed discussion see [16, 8])

M
∑

k=1

f(uk) = −
∫ ∞

−∞

du

2π

d

du
f(u) [Z(u) − 2L(u)] −

H
∑

h=1

f(xh) , (5.6)

where we have used the short notation

L(u) = Im ln
[

1 + (−1)δeiZ(u+i0)
]

, (5.7)

and defined δ = L − M mod 2. In particular, we will be interested in the eigenvalues of

the conserved charges

Qr =

M
∑

k=1

qr(uk) = −
∫ ∞

−∞

du

2π

d

du
qr(u) [Z(u) − 2L(u)] −

H
∑

h=1

qr(xh) , (5.8)

which scale to the thermodynamic values Qr (3.3) according to

lim
L→∞

Qr

L
= Qr . (5.9)
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Remarkably (5.6) may be applied to (5.4) itself

Z(u) = LΦ(u) −
∫ ∞

−∞

dv

2π

2

(u − v)2 + 1
[Z(v) − 2L(v)] +

H
∑

h=1

φ(u − xh) −

−2

∫ ∞

−∞

dv

2π

d

dv
θ(u, v) [Z(v) − 2L(v)] − 2

H
∑

h=1

θ(u, xh) .

At this stage, it is customary to pass on to the Fourier space and it is possible to go through

this step even here. Although it is made rather cumbersome by the involved form of the

dressing phase

θ(u, v) = κ

∞
∑

r=2

∞
∑

ν=0

cr,r+1+2ν(g)g2r+2ν−1[qr(u)qr+1+2ν(v) − qr+1+2ν(u)qr(v)] , (5.10)

in Fourier space the following equation shall hold

(1+e−|k|)Ẑ(k) = L
2π

i
P

(

1

k

)

e−|k|/2J0(2gk) + 2e−|k|L̂(k) +

+

H
∑

h=1

e−ikxh
2π

i
P

(

1

k

)

e−|k| − 2κ

∫ ∞

−∞

dv

2π

∞
∑

r=2

∞
∑

ν=0

cr,r+1+2ν(g)g2r+2ν−1 ·

·
[

q̂r(k)
d

dv
qr+1+2ν(v) − q̂r+1+2ν(k)

d

dv
qr(v)

]

[Z(v) − 2L(v)] − (5.11)

−2κ

H
∑

h=1

∞
∑

r=2

∞
∑

ν=0

cr,r+1+2ν(g)g2r+2ν−1[q̂r(k)qr+1+2ν(xh)−q̂r+1+2ν(k)qr(xh)] .

Inspired by the thermodynamic case, we simplify a little this relation by introducing the

charges Qr

Ẑ(k) = L
2π

i
P

(

1

k

)

J0(2gk)

2 cosh k
2

+
2

1 + e|k|
L̂(k) +

H
∑

h=1

e−ikxh
2π

i
P

(

1

k

)

1

1 + e|k|
+

+
κ

cosh k
2

∞
∑

r=2

∞
∑

ν=0

cr,r+1+2ν(g)g2r+2ν−1

[

2π

gr−1

1

ir−2

Jr−1(2gk)

k
Qr+1+2ν −

− 2π

gr+2ν

1

ir+2ν−1

Jr+2ν(2gk)

k
Qr

]

, (5.12)

and also the explicit form (3.4) of the Fourier transform of the charge densities, q̂r(k). A

very crucial difference of this non-linear integral equation from the others in the literature

may be stated in the presence of Z(u) in infinite many place, i.e. all the charges Qr (5.8).

Concerning the latter, we may correct the thermodynamic system of equations in case

of finite L. In fact, we first rewrite the expressions (5.6) in terms of Fourier transforms

Qs = −
∫ ∞

−∞

dk

4π2
q̂′s(−k)[Ẑ(k) − 2L̂(k)] −

H
∑

h=1

qs(xh) =

=

∫ ∞

−∞

dk

2π

i3+s

gs−1

Js−1(2gk)

e
|k|
2

[Ẑ(k) − 2L̂(k)] −
H

∑

h=1

qs(xh) . (5.13)
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Then we insert relation (5.12) into this expression to obtain the corrections

Qs =
is+2

gs−1

[

L

∫ ∞

−∞
dk

Js−1(2gk)J0(2gk)

k(e|k| + 1)
+

+2κ

∞
∑

r=2

∞
∑

ν=0

cr,r+1+2ν(g)(−1)1+ν

∫ ∞

−∞
dk

Js−1(2gk)Jr−1(2gk)

k(e|k| + 1)

gr+2ν

ir+2ν−1
Qr+2ν+1

+2κ
∞
∑

r=2

∞
∑

ν=0

cr,r+1+2ν(g)(−1)1+ν

∫ ∞

−∞
dk

Js−1(2gk)Jr+2ν(2gk)

k(e|k| + 1)

gr−1

ir−2
Qr

]

−

−
∫ ∞

−∞

dk

2π

i3+s

gs−1

Js−1(2gk)

cosh k
2

L̂(k) −
H

∑

h=1

∫ ∞

−∞

dk

2k
e−ikxh

i2+s

gs−1

Js−1(2gk)

cosh k
2

. (5.14)

This relation is exact and, at least in principle, may be efficient in the analysis of the

conserved charges, though now Z(u) appears.

6. Outlook

In this paper we have pointed out some aspects of the (long-range) asymptotic Bethe

equations with dressing factor for the SU(2) sector of planar N = 4 SYM. In the specific

case of the anti-ferromagnetic state in the thermodynamic limit, we have written an inte-

gral equation for the density of Bethe roots and solved it in the leading strong coupling

limit. Upon integration, this density gives an approximation for (the eigenvalues of) the

commuting charges on this state. Nevertheless, for these charges we have also derived an

exact linear system (of algebraic equations): we do think that its investigation may clarify

many points, especially about the strong coupling expansion. As a mathematical curiosity,

we have observed that these equations are exactly solved in the strong coupling limit if

one doubles the dressing factor of [14, 15]. At present, this mathematical simplification

has no physical meaning, but the exactness of the solution at this special value of the

dressing. As well known in (integrable) statistical field theory, the linear integral equation

converts into a non-linear one when the size L becomes finite: in this respect we have

shown that this case does not make any exception, though the specific equation is rather

involved. Moreover, we have focused our attention at most to the hole ’excitations’ on

the anti-ferromagnetic configuration and we have derived a finite-size corrected system of

equations for the charges. Eventually, we should be able to give simple generalisations of

the aforementioned results to the other states/operators along the lines of [16], including

complex pairs.
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